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ABSTRACT

An efficient method is presented for calculation of RMS von Mises stresses from stress component
transfer functions and the Fourier representation of random input forces. An efficient
implementation of the method calculates the RMS stresses directly from the linear stress and
displacement modes. The key relation presented is one suggested in past literature, but does not
appear to have been previously exploited in this manner.
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Introduction

The primary purpose of finite element stress analysis is to estimate the reliability of engineering
designs. In structural applications, the von Mises stress due to a given load is often used as the
metric for evaluating design margins. For deterministic loads, both static and dynamic, the
calculation of von Mises stress is straightforward [1]. For random load environments typically
defined in terms of power spectral densities, the linear theory normally applied to compute RMS
acceleration, displacement, or stress tensor responses cannot be applied directly to calculate the
RMS von Mises stress, a nonlinear function of the linear stress components. Although, what is
ultimately sought isnot the frequency distribution or time history of the von Mises stress but it’s
RMS value, the probability distribution of von Mises stress is not Gaussian, nor is it centered about
zero as are the stress components. Therefore, the form of the von Mises probability distribution
must be determined and the parameters of that distribution must be found. Due to space constraints,
determination of the von Mises probability distribution will be the subject of a later paper.

The most direct method of calculating von Mises stress from frequency data requires computation
of a long time series of linear stress components. The stress invariants can be computed at each
time step and an RMS value determined through time integration. This process is of order

 for each output location. This expensive computational procedure makes broad

surveying for von Mises stress impractical. Computationally simpler methods, such as Miles’
relation [2], involve significant approximations that can be nonconservative [3].

A new, computationally efficient process for computing the RMS values of von Mises stress is
introduced. The new method enables the analyst to perform surveys of von Mises stress routinely,
allowing a thorough investigation into the reliability of an engineering design. This method
accounts for the full frequency response of the structure.

The Problem

In a typical random vibration test, a structure is attached to a single input load source, such as a
shaker table, and subjected to a vibratory load characterized by a specified power spectral density
(PSD) of the input acceleration. To illustrate the problem, a finite element model of an aluminum
cylinder, subjected to transverse random vibration at the base, was created using shell elements.
Figs. 1 and 2 show the cylinder model and the input acceleration PSD applied at the base,
respectively. Current standard procedure is to assume single-DOF response of the structure,
choosing a single mode (typically the one with highest modal effective mass [4] within the
bandwidth of the input) to compute an “equivalent static g-field” using Miles’ relation. Response
contributions from other structural modes are ignored. To the extent that single-DOF behavior is
not realized, this method is inaccurate for ascertaining the global random stress response. A
method is proposed here that accurately captures the RMS von Mises stress from all excited modes
throughout the structure, and for all frequencies of interest.
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Structure And Inputs

Consider a structure,S, for which a complete linear dynamics analysis has been performed. Input
to the linear system are histories of an extended force vector

, (EQ 1)

where the subscripts denote the degree of freedom, and  denotes the matrix transpose. The
complete dynamic analysis asserted above includes generation of deterministic transfer functions
mapping the imposed forces to stresses at the locations of interest.

At a location , the stress, , is expressed as a convolution of the imposed force history with
the stress impulse response function [5],

(EQ 2)
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Figure 1: Cylinder FEM.
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Figure 2: Input transverse PSD at cylinder base.
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Computationally, and for the sake of convenience in nomenclature,  is taken to be an algebraic

vector of length six,  consisting of the non-redundant components of

the stress tensor. Representing the number of rows of  as , the impulse response function

is a  matrix.

The common use of digitized data and the Fast Fourier Transform (FFT) suggest a restatement of
the above equations in terms of Fourier series. Further, the linear analysis is conveniently and
conventionally expressed in terms of transfer functions in the frequency domain.

Let the force vector be expressed as,

, (EQ 3)

where ,  is a period on the order of the time of the experiment, and  is thenth

frequency component of . Here it is assumed that the time-averaged value of the imposed force is
zero.

The frequency domain representation of  is given by,

(EQ 4)

In general,  is known only in a statistical sense, and its transform  is known to the same extent.

When Eq. (EQ 3) is substituted into Eq. (EQ 2), we find,

, (EQ 5)

where

(EQ 6)

and

. (EQ 7)
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(EQ 8)

where  is the expected value obtained by ensemble averaging [6] and  is the complex
conjugate operator.

For a single force input, this is the autospectral density,

. (EQ 9)

RMS von Mises Stress In Frequency Domain

It is of interest to calculate the mean value of the square of the von Mises stress over a given time
period. (In fact, the method presented here can be used to examine any other quadratic functions
of the linear output variables.) The quadratic functions of the output variables, such as squared von
Mises stress, must be mapped from the imposed force.

Consider quadratic functions of stress, written in the following form,

(EQ 10)

where  is a symmetric, constant, positive semi-definite matrix. In the case of von Mises

stress,

and,

(EQ 11)

Equation (EQ 10) expanded in Fourier terms is

, (EQ 12)
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and some trigonometric manipulations show the time-averaged value of the square of von Mises
stress to be

(EQ 13)

where  denotes the Hermitian operator (complex conjugate transpose).

Equation (EQ 13) is a form of Parseval’s theorem [7]. The root-mean-square value, , of  is

given by

. (EQ 14)

To be useful, the above expansions must be expressed in terms of the input forces

. (EQ 15)

With ensemble averaging, Eq. (EQ 15) can be expressed in terms of the input cross spectral density
matrix of Eq. (EQ 8).

. (EQ 16)

The one-dimensional version of Eq. (EQ 16) has been used previously in stress analysis [3,8], but
the equations presented here appear to be the first that accommodate the full stress tensor.

RMS von Mises Stress Using Modal Superposition

Modal superposition provides a convenient framework for computation of RMS stress invariants.
The linear components of the stress (not principal stresses) can be superposed since they are

derivatives of linear functions. Let  represent the stress components (1 to 6) for mode ,

evaluated at node . The “stress modes” are standard output from most FEA modal analysis codes
(such as the grid point stresses in MSC/NASTRAN [9]).

For a modally damped structure, the transfer function for a stress at location  due to an input force
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(EQ 17)

Here,  is the displacement eigenvector, and  contains all frequency dependence. The RMS
stress at nodeb is computed by combing equations 16 and 17.

. (EQ 18)

Grouping terms and simplifying,

(EQ 19)

where

 and (EQ 20)

. (EQ 21)

Here  depends only on the node location for stress output, and  contains all the frequency

dependence of the problem. For a single shaker input, , and equation 21 reduces to,

(EQ 22)
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Results And Verification

The shell elements used to model the cylinder in Fig. 1 produce no out-of-plane stresses [9].
Therefore, in element coordinates, the three remaining nonzero stress components are ,

(normal stress) and  (shear stress). In this context,  reduces to a 3 x 3 matrix,

(EQ 23)

The transfer functions for the stress components were computed from Eq. (EQ 17) at each grid
point in the model. A typical set of transfer functions at one of the grid points is illustrated in Fig.
3. The stress and displacement eigenvectors,Ψ andϕ, required to compute the transfer functions
were obtained using MSC/NASTRAN, and 1% modal damping was applied.

The mean squared von Mises stresses at each grid point were calculated using three methods: (a)
time realization using Eq. (EQ 10) and an inverse FFT of Eq. (EQ 6); (b) direct frequency
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realization of Eq. (EQ 13) using Eq. (EQ 16); and (c) the implementation of Eq. (EQ 13) using the
efficient modal superposition procedure of Eq. (EQ 19). The mean squared von Mises stresses at
each grid point were found to be identical using each of the three methods, thus verifying the
procedure.

Time and frequency realizations of the input acceleration and output stresses at a typical point are
shown in Figs. 4 and 5, respectively. Time and frequency plots for the mean squared and RMS von

Mises stresses at the same location are presented in Fig. 6. The RMS von Mises stresses at all grid
points were computed from Eqs. (EQ 14) and (EQ 19), with contours of this quantity plotted in
Fig. 7.

As illustrated in Fig. 5, the shear and one of the normal stress components dominate the stress state
at this location.  is driven by the first bending mode of the cylinder, at 724 Hz.  is driven by
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both first and second bending modes, the second occurring at 3464 Hz. The relatively low  stress

is driven by the first three modes, the third occurring at 7698 Hz.

We see in Fig. 6 that the frequency content of the squared von Mises stress contains terms at twice
the excited natural frequencies (e.g., 1448 Hz, 6928 Hz). This observation is attributable to the fact
that a squared sinusoid is another sinusoid at twice the original frequency (plus a constant). The
linear stress components respond at the natural frequencies of the structure, while the squared von
Mises stress responds at twice these frequencies. At this particular location, the  term in the

expression for von Mises stress is small and the first two modes, drivers for  and , also drive

the von Mises stress. Von Mises stress frequencies also occur at fj - fi, where i,j denote excited
modes. For example, Fig. 6 shows von Mises content at f2 - f1 = 3464 - 724 = 2740 Hz and at f3 -
f2 = 7698 - 3464 = 4234 Hz.
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Comparison With Miles’ Relation

Evaluations of RMS von Mises stress using the new procedure and the traditional Miles’ relation
were compared. A new input acceleration PSD was generated, as shown in Fig. 8. Three cases were
examined in which the input PSD frequency range was selected to excite (a) only the first mode,
(b) only the second mode and (c) both first and second modes. To excite the first mode only, the
input PSD followed the definition of Fig. 8 up to 1000 Hz, and was set to zero beyond this
frequency. For second mode response, the input PSD was set to zero below 1000 Hz and followed
the Fig. 8 definition between 1000 and 10,000 Hz. Excitation of both modes resulted by applying
the full PSD from zero to 10,000 Hz.
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Miles’ method assumes single-DOF behavior of a structure. An additional constraint on the
application of Miles’ relation to elastic structures is that the shape of the single excited mode must
approximate the profile of the structure under a static g-field. For example, the first mode of a
cantilever beam assumes the approximate shape of the beam under a transverse g-field.

Miles’ relation is given by,

(EQ 24)

where  is the approximate RMS acceleration response, commonly used as an “equivalent static-

g field”,  is the single natural frequency chosen for application of Miles’ relation,  is

the value of the input acceleration PSD at frequency , and  is the quality factor, defined as

. For the input PSD shown in Fig. 8,  from Eq. (EQ 24) is 10.7 g for the first modal

frequency (724 Hz), and 90.3 g for the second modal frequency (3464 Hz).
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Because the von Mises stress in a static g-field scales with the magnitude of the field, the static
response of the cantilevered cylinder to a 1-g field may be used to scale the Miles’ approximations
for each mode. The displacement and von Mises stress responses to a transverse 1-g field are
presented in Figure 9. The profile of the static response is similar to the first mode of a cantilever
beam. The maximum von Mises stress corresponding to the 1-g static field is 12.6 psi, and occurs
at the base top and bottom-most fibers. Thus, the maximum von Mises stresses corresponding to
the Miles’ equivalents for the first and second modal frequencies  are 134.4 and 1138.3 psi,
respectively.

The true RMS von Mises stresses were computed using the new method presented above. The
stress contours which result from the application of the input PSD below 1000 Hz are
superimposed upon the deformed shape for the first mode in Fig. 10. The stress contours and shape
profile closely resemble those of the static-g response. The maximum RMS von Mises stress for
this case is 117.4 psi, showing the Mile’s method to be slightly conservative.

When the second mode alone is excited by applying the input PSD above 1000 Hz, an entirely
different result is obtained. The von Mises stress contours for this case are superimposed upon the
deformed shape for the second mode in Fig. 11. The stress contours and shape profile do not
resemble those of the static-g response. The maximum RMS von Mises stress for this case is 106.3
psi, showing the Mile’s method to be conservative by an order of magnitude.
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Finally, the entire PSD of Fig. 8 was applied to the cylinder, and the resulting von Mises stress
contours are superimposed upon the first and second mode shapes in Figs. 12 and 13. The contours
are observed to be a blend of the two narrow-band responses, with the maximum RMS von Mises
stress at 158.4 psi. The first-mode Miles’ approximation is slightly non-conservative, whereas the
second-mode approximation is much too conservative.

Summary And Conclusions

A computationally efficient method has been developed for calculating the RMS von Mises stress
in a random vibration environment. The method retains the full accuracy of the FEM model and
modal analysis. Surveys of the RMS stress for the entire structure can be computed efficiently. The

number of operations per node output is of order , where  is the number of modes computed.
Results exactly match a full time history development.
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Figure 9: von Mises stress contours and
displacements for a transverse 1-g field

M
2

M



Page 14

Conditions under which Miles’ relation produces good estimates of von Mises stress contours were
examined, as well as conditions resulting in poor estimates. Miles’ relation is adequate when the
system response is dominated by a single mode, and when the excited mode shape approximates
the response to a static g-field. Otherwise, both conservative and non-conservative estimates may
result from the application of Miles’ relation.

Work underway will further quantify the statistical properties of the von Mises stress. These
properties will determine the probability of the von Mises stress exceeding a given value for
infinite time and finite time force histories.
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Figure 11: von Mises stress contours for  f psd  > 1000 Hz
superimposed upon mode shape 2
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Figure 12: von Mises stress contours for
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